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Abstract

A time–frequency method is proposed for the analysis of response time histories from nonlinear aeroelastic systems.

The approach is based on a time-varying curve-fit of the short time Fourier transform of the impulse response. It is

shown that the method can be used in order to obtain a clear picture of the sub-critical stability of a number of

aeroelastic systems with a variety of structural and aerodynamic nonlinearities. Additionally, frequency and amplitude

information can be obtained for both the linear and nonlinear signatures of the response signals in the sub- and post-

critical regions. Finally, it is shown that, given certain types of nonlinear functions, sub-critical damping trends can be

extrapolated to predict bifurcation airspeeds.

r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The aerospace community is becoming increasingly aware of the importance of nonlinear aeroelastic phenomena in

both civil and military aerospace applications. One of the major concerns is the characterization and prediction of the

stability of aircraft in the presence of nonlinearities. The stability analysis of nonlinear aeroelastic systems is now being

considered to be of crucial importance. Considerable effort is being devoted to the prediction of flutter and limit cycle

oscillations for such systems using a variety of methods such as Centre Manifold Theory (Liu et al., 1999), Cell

Mapping (Levitas et al., 1994), variants of the Harmonic Balance Method (Raghothama and Narayanan, 1999) etc.

However, all these approaches assume that the system under investigation is fully determined, i.e. that its equations of

motion are known. In practice, when an aircraft is tested (either on the ground or in flight), only its dynamic response to

a given excitation signal is known. The effectiveness of identification methods for nonlinear systems is still problem-

specific and, as a consequence, these techniques cannot in general be used to obtain the equations of motion of the

aircraft. Hence, there is a need for methodologies which can predict the stability of nonlinear aeroelastic systems from

response data.

Mastroddi and Bettoli (1999) analysed the output signal of a nonlinear system in the neighbourhood of a Hopf

bifurcation using wavelets in order to separate the linear and nonlinear signatures of the signal. They showed that this

decomposition can be used to estimate the critical airspeed from sub-critical data. However, the method is only rigorous

in the neighbourhood of a Hopf bifurcation.

In this work an alternative time–frequency approach is introduced which is valid throughout the sub-critical region,

even far away from the Hopf point. The new methodology is based on a time-varying curve-fit of the short time Fourier

transform (STFT) of the response of a nonlinear aeroelastic system, which, for a large class of nonlinearities, allows the

identification of all the harmonic components (linear and nonlinear) present in the motion. By following the evolution
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of these components in time and their variation with airspeed the stability of the system can be assessed up to the point

of a critical bifurcation (either to flutter or to limit cycle oscillations).

The feasibility of using time-varying curve-fits is demonstrated initially on a single-degree-of-freedom (dof) nonlinear

dynamic system. Then, the proposed method is formulated for multi-dof systems and applied to two simulated

nonlinear aeroelastic systems with a variety of nonlinearities and aerodynamic formulations.

2. Equivalence of time-varying linear and nonlinear systems

The aim of this section is to demonstrate the equivalence between a nonlinear and a time-varying linear system and

thus to justify the use of STFT techniques. Consider a simple 1-dof nonlinear system with cubic stiffness. The unforced

equation of motion is given by

M .y þ C ’y þ K1y þ K2y
3 ¼ 0; ð1Þ

where y is the displacement, M is the mass, C the damping coefficient, K1 the linear stiffness coefficient and K2 the cubic

stiffness coefficient. Eq. (1) can be written in a more concise form as

M .y þ C ’y þ KðyÞy ¼ 0; ð2Þ

where KðyÞ ¼ K1 þ K2y
2 can be referred to as the nonlinear stiffness function. The basic idea underlying the process of

linearization using time-variable linear systems is that Eq. (2) can be expressed as

M .y þ C ’y þ #KðtÞy ¼ 0; ð3Þ

where #KðtÞ is independent of yðtÞ: However, since the character of the response of nonlinear systems depends on initial

conditions (in this case yð0Þ and ’yð0Þ), the function #KðtÞ must also depend on these initial conditions. Hence #K ¼
#Kðt; yð0Þ; ’yð0ÞÞ:
Going back to Eq. (2), it can be seen that as y tends to zero, limy-0 KðyÞ ¼ K1; in other words, as the response level

decreases, the system becomes increasingly linear. Additionally, if C > 0 and there are no external forces applied on the

system, limt-N yðtÞ ¼ 0: Hence, it can be deduced that limt-N KðyÞ ¼ K1: In the case where Co0; limt-NyðtÞ ¼ N

and limt-N KðyÞ ¼ N: The case C ¼ 0 yields a bounded yðtÞ and, hence, no judgement can be made for the value of

limt-NKðyÞ:
In order to perform time-variable linearization on Eq. (2), a function #K ¼ #Kðt; yð0Þ; ’yð0ÞÞ must be sought which has

the following characteristics:

#Kð0Þ ¼ K1 þ K2y
2ð0Þ; ð4Þ

limt-N
#KðtÞ ¼K1 if C > 0;

limt-N
#KðtÞ ¼N if Co0: ð5Þ

Therefore, the values of #K are known for t ¼ 0 and N; but nothing is known about the behaviour of the function at all
other times. Fig. 1 shows the free response of the nonlinear system with initial condition yð0Þ ¼ 0:3 m and M ¼ 1:2 kg;
C ¼ 1:52N s=m; K1 ¼ 210 N=m; K2 ¼ 35 200 N=m3: The shape of the response is that of an exponentially decaying

sinusoid with decreasing frequency. The variation of frequency with time can be calculated from the zero crossings of

the response signal. If the time coordinate of the nth zero crossing of y(t) is denoted by t0ðnÞ then the frequency

variation is given by

f ðt0ðnÞÞ ¼
1

t0ðnÞ � t0ðn � 1Þ
: ð6Þ

This function is plotted in Fig. 2. It can be seen that the function has a nonzero value at t ¼ 0 and asymptotes to a finite

value as t-N:Hence, it is a very good candidate for #K: Indeed, from basic dynamical theory, the frequency of a single-

dof oscillator is given by 2pf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðK=MÞ

p
: Substituting #K we get

#K ¼ Mð2pf Þ2: ð7Þ

This function is plotted in Fig. 3. It asymptotes to K1 as t-N and its initial value is approximately equal to

K1 þ K2y
2ð0Þ: Hence, according to the conditions of Eq. (5), this function is a suitable choice for #K; for the particular

case where the initial condition is yð0Þ ¼ 0:3: The same form of function would be suitable for a system in which Co0:
By substituting back into Eq. (3) and numerically integrating the system, the response of the linearized, time-varying

system can be obtained. In Fig. 4, the responses of the nonlinear and linearized systems are plotted on the same axes,
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showing that the agreement between the two signals is quite good. This result demonstrates the feasibility of the concept

of approximating nonlinear system impulse responses by impulse responses from equivalent linear time-varying systems.

3. Time and frequency curve-fit for multi-dof nonlinear systems

In the previous section, it was shown that the response signal of a single-dof nonlinear dynamic system can be

adequately curve-fitted using an exponentially decaying sinusoid whose frequency varies with time. In this section, the

same rationale is applied to multi-dof nonlinear systems and an original methodology for a ‘time and frequency’

domain curve-fit is developed. A curve-fit of the system impulse response in the frequency domain is followed by a

signal reconstruction in the time domain. The process is akin to curve-fitting the STFT (Allen and Rabiner, 1977) of the

response signal. The STFT is given by

STFTðt;oÞ ¼
Z tþt1

t�t1

wðt � tÞHðtÞe�jot dt; ð8Þ
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Fig. 1. Response of 1-dof system with cubic stiffness, yð0Þ ¼ 0:5:
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Fig. 2. Frequency variation with time.
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where t is the time instance at which the response is Fourier transformed, t1 is equal to half the length of the response

section that is Fourier transformed (for the case of a section with 1028 points, t1 ¼ 1028Dt=2) and wðtÞ is a ‘sliding

window’ function which, in this case, is rectangular, i.e. wðtÞ ¼ 1:
The time and frequency parts of the methodology are presented in separate subsection. In the rest of this paper, the

term impulse response will be used to denote the time domain response of a system to an initial displacement and the

term frequency response function (FRF) will denote the Fourier transform of the impulse response.

3.1. Frequency domain curve-fit

The technique used in the previous section to estimate the frequency variation with time cannot be applied to a multi-

dof system because the response of such a system will, in general, contain more than one frequency at any one time.

Hence, a more sophisticated approach is followed, based on the rational fraction polynomial (RFP) method

(Richardson and Formenti, 1982).
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Fig. 3. Linearized, time-varying stiffness function variation with time.
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Fig. 4. Comparison of responses from nonlinear and linearized, time-varying system.
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The standard RFP method (G!eradin and Rixen, 1997) attempts to express the FRF of a given dynamic system in

terms of a polynomial fraction of the form

HðoÞ ¼
bnbðjoÞnb þ bnb�1ðjoÞnb�1 þ?þ b0

ðjoÞna þ ana�1ðjoÞ
na�1 þ?þ a0

þ e; ð9Þ

where HðoÞ is the FRF, bi; ai are the coefficients of the polynomials, nb and na are the orders of the polynomials and e is
the error. Then, bi; ai are evaluated in a least-squares sense by rewriting Eq. (9) as

Hðo1Þðjo1Þ
na

Hðo2Þðjo2Þ
na

^
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þ Error terms ð10Þ

which is equivalent to the form Y ¼ �Uaaþ Ubb: Finally, bi; ai are obtained by writing Eq. (10) as

Y ¼ �Ua Ub

� � a

b

( )
ð11Þ

and solving in a least-squares sense.

Traditionally, the coefficients ai; bi are forced to be real by solving the real and imaginary parts of Eq. (11) separately

while choosing na ¼ 2� m; where m is the number of modes in the system. Then, the roots of the denominator are m

complex conjugate pairs and are also the eigenvalues of the system.

For the present work, a slightly modified approach is introduced. The coefficients of both the numerator and the

denominator are allowed to be complex. Additionally, the requirement that na ¼ 2� m is relaxed. Since the technique is

to be used on response signals from nonlinear systems, the eigenvalues will not necessarily be pairs of complex

conjugate numbers. Consequently, an optimization procedure is employed to obtain na and nb so that both polynomials

will have the number of terms required in order to adequately fit the signal. The optimization procedure searches for the

values of na and nb which minimize jYþ Uaa� Ubbj2: The upper limits of the possible values of na and nb are obtained

from the criterion that ½�Ua Ub	 should not be rank-deficient.

The eigenvalues are given by the roots of the denominator. In this approach, the roots are not complex conjugate

pairs. Hence, the RFP method models the three-dimensional landscape that is described by HðoÞ in the real–imaginary–
frequency space.

The RFP approach cannot be used to curve-fit an entire impulse response from a nonlinear system in one application,

since the frequencies and dampings of the impulse response will change with time. Hence, the impulse response must be

split into small section, and the RFP method must be applied to each section separately. The length of each section is

determined mainly by two factors: (i) the rate at which the strongly nonlinear part of the response decays; (ii) the

desired time and frequency resolution.

For many nonlinear functions, the impulse response of a stable nonlinear system is highly nonlinear at high

amplitudes but tends to linear as the amplitude tends to zero. Hence, the strongly nonlinear part of the impulse response

needs to be subdivided into relatively small section the purposes of RFP curve-fitting in order to capture the variation of

frequency components with time. The approximately linear, low amplitude part of the response can be curve-fitted

using a single section. The impulse response of a nonlinear system which undergoes limit cycles features a nonlinear

transient part, followed by the LCO behaviour. Again, the transient part needs to be curve-fitted in small section while

the LCO part can be treated as quasi-linear and curve-fitted as a single section. In this sense, the RFP curve-fit is a

multi-resolution approach, but not in the same sense as the wavelet transform where the resolution is uniquely

dependent upon the value of the central response frequency (Heil and Walnut, 1989). It should be stressed that this

description of nonlinear impulse responses only holds for some nonlinearities. As will be shown later, in the case of

freeplay, the response is strongly nonlinear at low amplitudes and needs to be subdivided into small section throughout

the duration of the impulse response.
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3.2. Signal reconstruction in the time domain

After the eigenvalues are evaluated for each section using the RFP technique, they are used to reconstruct the time-

domain signal using

yðtÞ ¼ yf ðtÞ þ e; ð12Þ

where yðtÞ is the true signal and yf ðtÞ is a sum of exponentially decaying sinusoids given by

yf ðtÞ ¼
Xna

i¼1

Ai exp ð�RðliÞtÞ cosIðliÞt þ Bi exp ð�RðliÞtÞ sinIðliÞt þ C; ð13Þ

R and I denote real and imaginary parts, respectively, and Ai; Bi; C are unknown coefficients to be determined.

The purpose of the signal reconstruction is to determine the relative importance of each eigenvalue obtained from the

application of the RFP approach. Some of the eigenvalues returned by the method act as residuals which improve the

frequency curve-fit or accommodate noise but do not represent the dynamics of the signal in the chosen frequency band.

In this sense, the frequency domain is used in order to identify candidate eigenvalues and the time domain is used to

choose which of the candidates are significant. The system impulse response is curve-fitted using each eigenvalue

separately to obtain values for the amplitudes %Ai and %Bi corresponding to the ith eigenvalue

yðtÞ ¼ %Aiexp
�RðliÞt cosIðliÞt þ %Biexp

�RðliÞt sinIðliÞt þ %e: ð14Þ

The evaluation of %Ai and %Bi is performed in a least-squares sense, such that the square of the difference between the

true and curve-fitted signals, %e2; is minimized. The total amplitudes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
%A2

i þ %B2
i

q
are sorted in descending order of

magnitude and the sorting index is used to sort the corresponding eigenvalues in descending order of importance. Let k

be the sorting index such that k ¼ 1 denotes the most important eigenvalue and k ¼ na the least important one. Then,

the following curve-fits are performed:

yðtÞ ¼ yfkðtÞ þ ek; ð15Þ

where k ¼ 1; ::; na; and

yfkðtÞ ¼
Xk

i¼1

Aik exp ð�RðliÞtÞ cosIðliÞt þ Bik exp ð�RðliÞtÞ sinIðliÞt þ C; ð16Þ

C being the mean value of yðtÞ: For each value of k the amplitudes Aik and Bik are obtained in a least-squares sense and

an error reduction ratio (ERR) for a curve-fit using k eigenvalues is defined as

ERRk ¼ std yfkðtÞ � yðtÞ
� �

; ð17Þ

where std denotes the standard deviation. The minimum value of the error reduction ratio chosen for this study was

ERR > 0:01 which was found adequate in order to exclude all the residual eigenvalues. Then, if lp is the last eigenvalue for

which ERRp > 0:01; the final time-domain curve fit is given by yfpðtÞ and the significant eigenvalues are lk for k ¼ 1;y; p:

4. Applications of time-varying RFP method to simulated nonlinear aeroelastic systems

In this section, the RFP methodology is applied to two simulated nonlinear aeroelastic models: (i) the Hancock

model with control surface, which is a 3-dof model of a rigid wing with control surface in an incompressible airflow; (ii)

a CFD model of a 2-dof airfoil in transonic flow.

A detailed description of the Hancock system with control surface is given by Dimitriadis and Cooper (1999). For

convenience, the system will be referred to as the Hancock model, even though the original Hancock model (Hancock

et al., 1985) does not feature a control surface. Fig. 5 shows the layout of the model. The wing is a rectangular flat plate

with chord length c and span s: Structural stiffness is provided by three springs, Kg; Ky and Kb; in the heave, g; pitch, y
and control surface pitch, b; degrees of freedom. The airfoil pitches around the flexural axis, situated at xf and the

control surface rotates around the hinge axis, denoted by xh: The aerodynamics are modelled using quasi-steady strip

theory with approximations for some of the unsteady aerodynamic derivatives. The Hancock model can feature a

stiffness nonlinearity in the control surface degree of freedom. The nonlinear functions considered in this work are cubic

and freeplay and are plotted in Fig. 6.

The CFD model used in this study, is a structural model of a 2-dof NACA0012 airfoil (Lee et al., 1999). Fig. 7 shows

a drawing of the airfoil, suspended from two springs, Kh and Ka; providing stiffness in pitch, a; and plunge, h;
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respectively. The airfoil has a chord of length c and is pitching around its flexural axis, which is located at xf : This
structural model is coupled with transonic aerodynamic forces obtained from the solution of the Euler equations. The

solution is obtained by means of the PMB 2D code, developed at the Department of Aerospace Engineering of Glasgow

University. The theoretical basis of this code can be found in Badcock et al. (1995) and some more recent applications

are detailed in Goura et al. (2001a, b). Fig. 8 shows the computational grid used to solve the Euler equations. The grid
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has a radius of 15 chord lengths and includes a wake of 14 chord lengths. The nonlinearity in this case is entirely due to

the transonic aerodynamics.

4.1. Hancock model with cubic stiffness

In this example, the time-varying RFP technique is applied to the Hancock model with cubic stiffness. Before any

nonlinear results are presented, it is useful to discuss the stability of the Hancock model in the absence of nonlinearity.
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Fig. 9. Damping ratio and natural frequency variation for the linear Hancock model.
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Fig. 10. Control surface impulse response with cubic nonlinearity for an airspeed of 50m/s.
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Fig. 9 shows the variation of the natural frequencies and damping ratios of the Hancock wing with airspeed. The critical

damping curve is the control surface damping ratio which goes to zero at 36.5m/s indicating flutter. From the frequency

plot, it can be seen that the three natural frequencies start off at approximately 8, 14 and 30Hz. As the airspeed is

increased, the 8 and 14Hz components (control surface deflection and wing torsion respectively) approach each other,

forming the flutter mechanism.

In Fig. 10 the control surface impulse response for the nonlinear case is plotted at an airspeed of 50m/s. This result

was obtained by integrating numerically the nonlinear aeroelastic model using 20 480 time steps of length 5� 10�4 s: It
can be seen that, at this particular airspeed the system undergoes a limit cycle oscillation (LCO). The STFT for the same

response is shown in Fig. 11. The STFT was obtained by using time windows of 1024 time steps (i.e. 0.512 s). As the

time domain response amplitude increases, the response frequencies also increase slightly. Approximately 4 s into the

response, the system switches from a zero-mean limit cycle to one that is not centred around zero. The STFT shows that

the new limit cycle has twice as many frequency components. After the LCO is stabilized, the frequencies remain

constant.

The arithmetic values of all the frequency components in the STFT can be obtained by use of the time-varying RFP

method. The curve-fit was performed using frequency data between 0 and 150Hz from each STFT section. In order to

obtain an accurate fit, the frequency range was split into 3 section and Eq. (10) was applied separately to each section.

The resulting eigenvalues were then used in the time domain reconstruction. After the reconstruction, between 5 and 10

eigenvalues were retained at each response section. The frequencies obtained from these eigenvalues are plotted against

time in Fig. 12. The high quality of the curve-fit obtained after the time domain signal reconstruction is demonstrated in

Fig. 13, where the actual and curve-fitted time domain signals are plotted on the same axes for a portion of the response.

4.1.1. Stability analysis

The results presented up to now indicate that the time-varying RFP yields very good approximations of impulse

responses from nonlinear signals. However, the most important characteristic of aeroelastic systems is the fact that their

dynamic behaviour changes radically with airspeed, including bifurcations to LCOs and flutter. It will be demonstrated

that the time-varying RFP curve-fit is a useful tool for tracking these changes from impulse response data and even for

predicting imminent instabilities.

The changing character of the response of a nonlinear aeroelastic system with airspeed can be illustrated using a

bifurcation diagram (Dimitriadis and Cooper, 2000). On a bifurcation plot, the response is plotted only at times when

its derivative is zero and is, consequently, a type of amplitude plot. The plotting is repeated at a number of airspeeds,

thus giving an overview of the dynamic behaviour of the system over a given speed range. At airspeeds where the

response is decaying only zeros are plotted. The actual amplitude points are only plotted at airspeeds where the

response is a LCO. The process of building up a bifurcation plot is more clearly explained with the following

‘bifurcation function’:

BðV Þ ¼
0 decay;

yj ’y¼0 LCO;

(
ð18Þ

where V is the airspeed, BðV Þ is the bifurcation function, and y is the system response.

Before any results are presented, the concept of LCO period should be briefly discussed. This concept denotes the

complexity of a LCO motion and was introduced into the aeroelastic community by papers such as Price et al. (1994)

and Kim and Lee (1996). Essentially, a period-n LCO is a closed curve with n loops in the phase plane, as shown in

Fig. 14. The higher the period number of the LCO, the higher its complexity. In Dimitriadis and Cooper (2000) the term

period-x LCO was used to describe LCOs of such high complexity that they are quasi-periodic. Period-doubling and

period-halving behaviour denotes a rapid increase or decrease in LCO complexity within a short airspeed range. Often,

period doubling leads to period-x LCOs or even chaotic behaviour (Price et al., 1995).

Fig. 15 shows the bifurcation plot for the Hancock model with cubic stiffness. The results are summarized below:

* 0–37m/s: the response is decaying;
* 38–42m/s: the system admits a period-1 limit cycle;
* 42–48m/s: the system undergoes period-doubling behaviour, i.e. successive bifurcations to higher period limit cycles

(Dimitriadis and Cooper, 1999);
* 48–50m/s: period-halving behaviour, i.e. bifurcations to lower period limit cycles;
* 50–53m/s: period-4 limit cycle;
* 53–55m/s: period-6 limit cycle;
* 55–57.5m/s: period-doubling behaviour;
* > 57.5m/s: flutter.
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Note that LCOs first appear at an airspeed slightly higher than the linear flutter speed. The time-varying RFP curve fits

can also be used to provide stability information over a range of airspeeds. This is achieved by performing curve fits at

each individual airspeed and then plotting all the eigenvalues obtained from each fit against airspeed on two separate

figures, one for the real part (or damping ratios) and one for the imaginary part (or natural frequencies). In Fig. 16 the

damping ratios are plotted for the Hancock model with cubic stiffness. The shape of the figure at airspeeds below 37m/s

is very similar to the response of the linear 3-dof system, see Fig. 9. Three damping curves can be distinguished, the
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lowest representing the damping of the motion of the control surface, the middle one represents the torsional wing

vibrations and the top curve is due to the wing motion in bending. It should be noted here that positive damping ratios

denote positive stability, i.e. decaying response. The behaviour of all three damping curves is of interest, as follows.
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Fig. 15. Bifurcation plot for Hancock model with cubic stiffness.
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(i) 15–37m/s: The control surface damping curve is well-defined, its value starts off positive, increases slightly (up to

approximately 26m/s) and then decreases to zero. This is the region where the response is decaying and the control

surface damping curve is behaving very much like a critical damping curve in a linear aeroelastic system. When the

damping reaches zero, the system goes into limit cycle oscillations. After 30m/s the wing torsion damping also

starts to decrease towards zero. The wing bending damping curve seems to disappear at 26m/s.

(ii) 38–42m/s: Only one prominent damping curve exists, centred around zero. The width of the damping curve is

slowly increasing with airspeed. The bifurcation plot indicates that, in this region, the system undergoes period-1

LCOs. The widening of the PDC may well signify the fact that a new bifurcation is imminent

(iii) 42–48m/s: The damping curve is considerably scattered over a large range of damping ratio values (positive and

negative). The period-doubling behaviour causes very complex (period-x) LCOs whose frequencies and dampings

change constantly with time. In order to curve-fit these responses using the RFP technique, a large number of

eigenvalues with considerable scatter is required. In fact, the accuracy of the RFP is drastically reduced in this

flight regime.

(iv) 48–55m/s: The system bifurcates to low period LCOs so that the quality of the curve-fits improves considerably.

(v) 55–57.5m/s: The scatter in the damping ratios is again increased due to the period-doubling behaviour.

(vi) > 57.5m/s: Flutter (deduced from the bifurcation diagram).

A note should be made of the fact that there is a considerable number of negative damping ratios which, in a linear

system, would indicate instability. It should be remembered though that the RFP approach does not fit the nonlinear

system; the eigenvalues obtained from the curve-fits reflect the response signal, modelled as the response of an

equivalent time-varying linear system. Hence, it can happen that an eigenvalue with a positive real part (i.e. negative

damping ratio) is needed in order to accurately fit a particular section of the response.

Fig. 17 plots the natural frequencies obtained from the application of the time-varying RFP procedure to the

Hancock model with control surface. Its main features are the following.

(a) 15–36m/s: Four very prominent frequencies at 9, 15, 31 and 48Hz are visible. The prominence of each frequency

refers to how many times the frequency appears in the impulse response at a given airspeed. The 9Hz frequency is

the frequency of the control surface mode, the 15Hz frequency corresponds to wing torsion and the 31Hz to wing

bending. The 48Hz frequency component is a harmonic of the control surface with very small damping but also

very little energy hence, it does not appear in the damping plots. From 30m/s onwards, the 9 and 15Hz frequency

components start to merge. This is the linear flutter mechanism. However, the frequency components at 31 and

48Hz also appear to draw closer to each other. It is not known whether this is a secondary instability mechanism.

The low energy content of the 48Hz component suggests that, if there is a second instability mechanism, its effect

must be small.

(b) 36–42m/s: The system starts to limit cycle. The four frequencies of the previous region have merged into two

components at 12 and 38Hz. Two new prominent frequency components appear at 65 and 90Hz and, later on, two
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further frequencies appear at 117 and 142Hz. All the new components are higher harmonics and accommodate the

shape of the limit cycles.

(c) 42–48m/s: In this speed range the system undergoes period doubling. There are now nine frequency components

but these results are not trustworthy since, as mentioned earlier, the quality of the curve-fits in this region is

mediocre.

(d) 48–56m/s: All the frequency components become better defined, and the number of the frequency components

rapidly drops from 10 to 6 as a result of the drop in the complexity of the LCOs.

(e) 56–57.5m/s: Increased scatter in all of the frequency components.

(f) > 57.5m/s: Flutter (deduced from the bifurcation diagram).

Figs. 16 and 17 demonstrate that it is possible to track the sub-critical stability of a multi-dof nonlinear aeroelastic

system using time–frequency techniques. When at least one of the sub-critical damping curves decreases towards zero, it

is a sign of impending instability.

4.1.2. Stability prediction from sub-critical data

Up to now it has been demonstrated that the application of the time-varying RFP method to response data from the

Hancock model with cubic nonlinearity in the control surface can yield time-varying damping plots, such as the one in

Fig. 16. These damping plots show clearly that the value of each damping curve becomes zero at the bifurcation point.

In this section it will be shown that these damping curves can be unified into a single stability criterion that can be used

to predict the bifurcation airspeed from sub-critical data.

Fig. 16 can only be used for a qualitative estimation of the system stability. However, by averaging the damping

values obtained at each airspeed, a single damping curve can be obtained. This averaged damping curve also tends to

zero at the bifurcation point.

In order to demonstrate the use of the averaged damping criterion in estimating the bifurcation speed from sub-

critical data, the following simulated ‘flutter test’ was performed.

1. The system impulse response was simulated at 5m/s and then at increasing airspeeds, at intervals of 2m/s.

2. At each airspeed, the time-varying RFP method was used to obtain the averaged damping criterion.

3. At each airspeed, the current and previous damping data was curve-fitted by a third-order polynomial.

The roots of the polynomial were obtained and used as an estimate of the bifurcation speed. In cases where the

polynomial had no suitable roots (i.e. real and higher than the current airspeed), no predicted bifurcation speed was

logged.

4. When the ratio of the current airspeed to the predicted bifurcation speed exceeded 80%; the flutter test was stopped.
The latest value of the estimated bifurcation speed was taken to be the critical condition.

Fig. 18 shows the variation of the averaged damping criterion obtained throughout the test, The bifurcation speed

predictions are tabulated in Table 1. It can be seen that the ratio Vi=Vc exceeded 80% at 31m/s, at which the predicated
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bifurcation speed was 38.02m/s. The bifurcation plot of Fig. 15 shows that the true bifurcation speed is 38m/s, thus

demonstrating that the application of the time-varying RFP method can indeed predict the bifurcation speed from sub-

critical data.

4.2. Hancock model with freeplay stiffness

The freeplay function applied to the control surface spring of the Hancock model was of the form shown in Fig. 6.

The inner stiffness K1 was equal to 0, the outer stiffness K2 was chosen as twice the linear stiffness and the width of the

freeplay region, d was 2
:
Freeplay stiffness is a destabilizing nonlinearity and causes the Hancock model to behave in a highly nonlinear

manner. The responses contain a large number of frequencies at irregular intervals and at large separations.

Additionally, there are regions in the parameter space where chaotic pockets can occur. A sample impulse response

of the control surface is plotted in Fig. 19, demonstrating highly irregular, a periodic behaviour. Nevertheless, the

RFP procedure can extract the correct frequencies from the STFT. In Fig. 20 the STFT of the response in Fig. 19

is plotted. The STFT reveals that, between 0 and 3 s, there is a large number of frequency components while,

after 4 s only two frequencies are visible. The RFP procedure provides the same frequency information, as shown in

Fig. 21.

Fig. 22 shows the bifurcation diagram for the Hancock model with freeplay stiffness in the control surface. The

following stability regions can be distinguished:

(i) 0–15m/s: the response is decaying;

(ii) 15–16m/s: the system exhibits chaotic behaviour; depending on the airspeed the response may be either decaying

or a chaotic limit cycle, i.e. a limit cycle with band-limited amplitude; this type of response is sometimes called

‘narrow band chaos’ (Moon, 1992);

(iii) 16–44m/s: period-3 limit cycle;

(iv) > 44m/s: flutter.

Fig. 23 shows the damping ratio variation with airspeed. The increased level of noise in the figure is due to the

severity of the nonlinear behaviour of the system with freeplay. As mentioned earlier, limit cycle oscillations first appear

at 15m/s, at which point the damping ratios become zero. However, unlike the previous case (cubic nonlinearity), the

sub-critical behaviour of the damping ratio plot does not emulate the linear behaviour. Two components with

increasing damping ratio can be distinguished, but there is no critical component. Hence, the sub-critical results suggest

that the motion becomes increasingly stable with increasing airspeed until instability is suddenly encountered.

The frequency plot of Fig. 24 reveals another aspect of the problem of curve-fitting the response of the system with

freeplay stiffness. Since freeplay stiffness in the freeplay region is zero, the stiffness of the control surface in that region

is exclusively aerodynamic, which happens to be of much smaller magnitude than the stiffness required to prevent the

occurrence of static divergence. Hence, the Hancock wing is diverged at low response amplitudes and, effectively, the

control surface degree of freedom has no natural frequency. The two sub-critical frequency components in Fig. 24
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Table 1

Bifurcation speed estimates, Hancock model with cubic nonlinearity

Current airspeed, Vi (m/s) Bifurcation speed estimate, Vc (m/s) Vi=Vc

9 13.07 0.69

11 25.48 0.43

13 18.00 0.72

15 27.88 0.54

17 41.51 0.59

19 N/A N/A

21 35.76 0.59

23 32.24 0.71

25 34.44 0.73

27 36.10 0.75

29 36.76 0.79

31 38.02 0.82
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represent the wing torsion and wing bending only. The critical degree of freedom does not appear in either the

frequency or damping plots.

The particular form of the damping plot for this example (Fig. 23) suggests that it is impossible to use sub-critical

damping data to obtain an estimate of the bifurcation airspeed in the presence of freeplay stiffness nonlinearity.
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Fig. 20. STFT of response in Fig. 19.
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Fig. 21. Frequencies from RFP curve-fit of response in Fig. 19.
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Fig. 19. Example of control surface impulse response from Hancock model with freeplay stiffness.
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4.3. CFD 2-dof airfoil model with transonic unsteady aerodynamics

The final example presented in this work concerns a 2-dof airfoil in transonic flow. In this case, there are no structural

nonlinearities; the aerodynamic forces are nonlinear. The main effects of this type of nonlinearity are static divergence

and bifurcations to limit-cycle behaviour, both of which phenomena are sometimes combined. For an overview of the

effects of transonic aerodynamics on flexible aircraft see reference (Anderson, 1995).
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Fig. 24. Time-varying RFP frequency plot for Hancock model with freeplay stiffness.
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Fig. 22. Bifurcation plot for Hancock model with freeplay stiffness.
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CFD-based transonic aeroelastic computations are becoming increasingly possible within the aeroelastic community,

as witnessed by recent publications such as Guillot and Friedmann (2001). In Friedmann (1999), transonic aeroelastic

simulation is referred to as ‘... the holy grail of modern aeroelasticity’.

As mentioned earlier, the CFD solution used for the present work was obtained using the Glasgow PMB 2D code.

The main governing parameters are Mach number, airspeed and initial conditions. The test-case chosen for the
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Fig. 25. Bifurcation plot for CFD model.
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Fig. 27. Short time Fourier transform of pitch response in Fig. 26.
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application of the RFP method concerned a constant Mach number of 0.8 with a variable value of the nondimensional

airspeed %U ¼ 40U=boa; where U is the true airspeed, b is the half-chord and oa is the frequency in pitch. The

bifurcation diagram for this particular test-case is shown in Fig. 25. The response is decaying up to an airspeed of
%U ¼ 17 where period-1 limit cycles appear for the first time. The system flutters at airspeeds higher than %U ¼ 22: The
bifurcation diagram is insensitive to initial conditions.
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Fig. 28. Frequencies from RFP curve-fit of pitch response in Fig. 26.
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Fig. 29. Time-varying RFP damping plot for CFD model.
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Fig. 30. Time-varying RFP frequency plot for CFD model.
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A sample impulse response of both degrees of freedom is plotted in Fig. 26 for %U ¼ 18: It can be seen that the system
admits a period-1 limit cycle. The STFT plot of the pitch degree of freedom (Fig. 27) reveals the existence of one base

frequency at %o ¼ 0:9 and a third-order harmonic component at %o ¼ 2:7: It should be noted that %o is a nondimensional

frequency. The time-varying RFP analysis for the same signal reveals the existence of a few more harmonic

components. Fig. 28 shows the frequency variation with time obtained by means of the RFP procedure. Apart from the

first and third harmonics, second, fifth and sixth components are also visible at %o ¼ 1:8; 4.5 and 5.4, respectively.

Nevertheless, these additional components contain very little energy, which is the reason for their absence from the

STFT plot.

Figs. 29 and 30 show the damping and frequency variation with airspeed for the CFD model, obtained through the

use of the RFP technique. Both plots were curve-fitted by hand in order to demonstrate the damping and frequency

trends more clearly. This procedure was dictated by the fact that the integration of the CFD model is very

computationally intensive and, hence, it is impractical to run the same number of simulations as with the earlier

examples. Nevertheless, the curve-fit consisted of joining-up adjacent points by hand hence the results were not altered

in any way. A very similar approach is used in many flight flutter tests (Kehoe, 1995).

In the damping plot of Fig. 29 there are four curves, three of which behave like classical critical flutter curves. The

fourth damping component accounts for the fact that there is a certain amount of static divergence in the impulse

responses of the CFD model. The divergence is significant at sub-critical conditions but becomes negligible at airspeeds

higher than %U ¼ 16: Hence, at sub-critical flight regimes, there is always a component with a damping ratio of almost 1,
i.e. if the corresponding eigenvalue is denoted by l; jRðlÞj >> jIðlÞj and the contribution of this eigenvalue to the system
response is mainly rigid-body. The same eigenvalue can be observed in the frequency plot of Fig. 30 where, at sub-

critical speeds, there is a component whose frequency is almost zero, again denoting nonoscillatory motion.

After the Hopf bifurcation occurs at %U ¼ 17; the damping of all the components becomes zero while there are five

frequency components, as discussed earlier. Nevertheless, the most important feature of the RFP curve-fit of the CFD

model is that the sub-critical variation of the damping ratio (especially the two lowest curves) allows for the

determination of the critical point from sub-critical data.

4.3.1. Stability Prediction from sub-critical Data

The damping curves of Fig. 29 can be used in order to predict the bifurcation point from sub-critical data, as was

done for the Hancock model with cubic nonlinearity. Averaged damping data from sub-critical reduced airspeeds were

employed in a simulated flutter test. As was done previously, the averaged damping data were curve-fitted by

third-order polynomials at each airspeed and the suitable roots of the polynomials were taken to be the current

estimates for the bifurcation condition.

Fig. 31 shows the averaged damping criterion variation with reduced airspeed. The bifurcation speed estimates

obtained at each airspeed are shown in Table 2. It can be seen that the ratio of the current airspeed to the predicted

bifurcation speed exceeds 80% at a reduced airspeed of 14. Hence, using only sub-critical data from airspeeds at least
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Fig. 31. Variation of averaged damping criterion with airspeed during simulated flutter test for 2-D transonic airfoil.
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20% lower than the critical airspeed, the bifurcation condition was pinpointed at a reduced airspeed of 16.81. Since the

CFD model was integrated only at integer values of the reduced airspeed, the exact critical airspeed is not known but

Figs. 25 and 29 show that it must be between 16 and 17.

It can be concluded that the time-varying RFP method was successfully applied to this 2-D transonic aeroelastic

problem in order to predict the bifurcation airspeed from sub-critical impulse response data.

5. Conclusions

Amethod for the characterization of responses from nonlinear aeroelastic systems has been developed. The technique

consists of a frequency curve-fit of short section of the impulse response combined with a time domain signal

reconstruction. It is shown that the new methodology can identify frequency components and damping trends for both

decaying and limit-cycle responses of aeroelastic systems containing certain types of nonlinearity. Additionally, the

damping trends can be used to predict the airspeed at which a bifurcation will occur from sub-critical data.

The approach is applied to two different simulated aeroelastic systems with three types of aerodynamic and structural

nonlinearities. It is shown that, in the presence of stabilizing nonlinearities such as hard cubic springs and transonic

aerodynamics, the method is successful in describing harmonic components and predicting critical airspeeds. However,

in the presence of destabilizing nonlinearities such as freeplay, the method can fail. The success of the method is

dependent on the type of bifurcation caused by the nonlinear functions. The stabilizing nonlinearities considered in this

work cause Hopf-type bifurcation to limit cycle oscillations. In these cases the method will successfully predict the

bifurcation condition from sub-critical data. However, freeplay stiffness can cause a chaotic bifurcation and, as a

consequence, the method fails when applied to an aeroelastic system with freeplay in the control surface.
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